
FEATURES OF THE ELECTRIC CURRENT AND FIELD 

DISTRIBUTIONS IN FLOWS WITH NARROW LAYERS 

OF HIGHLY CONDUCTIVE GAS 

E. K. Kholshchevnikova 

A solution obtained by Fourier's method provides the basis for analyzing the influence of 
a narrow gas layer, of higher conductivity than the rest of the flow, on the Joule dissipa- 
tion and current distribution in the terminal zone of a plane magnetohydrodynamic chan- 
nel with nonconducting walls. The MHD interaction parameter, Reynolds magnetic num- 
ber, and Hall parameter are assumed small. It is shown that a narrow, highly conductive 
layer can on occasions be replaced by a surface of discontinuity, on which well-defined 
relations between the electric quantities are satisfied. The presence of such a layer 
leads to an increase in the Joule dissipation and a reduction in the lengths of the current 
lines. A hopeful arrangement for a magnetohydrodynamic energy converter is one in 
which an inhomogeneous flow is used, consisting of a continuous series of alternating 
very hot and less hot zones [1,2]. For this arrangement, it is worth examining the in- 
fluence of the stratified conductivity distribution of the working body on the Joule dissi-  
pation and the electric currents in the channel. Numerous papers have discussed the 
case of inhomogeneous conductivity in the context of MHD system electrical character- 
istics. A general solution was obtained in [3] for the stationary problem on the electric 
field in a plane MHD channel with nonconducting walls when the magnetic field and con- 
ductivity are arbitrary functions of the longitudinal coordinate. In [4], where the braking 
of undeformed conducting clusters was investigated, the Joule dissipation, linked with the 
appearance of closed eddy currents in the cluster as it enters and leaves the magnetic 
field, was evaluated. The relationships between the electrical quantities, on moving 
through a narrow layer of low-conductivity liquid, were considered in [5]. 

1. C o n s i d e r  a p l ane  c h a n n e l - ~  < x < - ~ ,  0 <- y -< h with nonconduc t ing  w a l l s  (Fig.  1), t h rough  which  
f lows a m e d i u m  wi th  s t r a t i f i e d  e l e c t r i c a l  conduc t iv i ty :  a 1 in r e g i o n s  1 and 3 (the l e s s  hot  zones ) ,  and  (Y2 
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Fig. 1 

in r e g i o n  2 (the h o t t e r  zone) .  The  flow t a k e s  p l a c e  in a t r a n s v e r s e  m a g n e t i c  f i e ld  
B = (0,0,Bz(x))  with weak  m a g n e t o h y d r o d y n a m i c  i n t e r a c t i o n .  In th i s  c a s e  the  h y -  
d r o d y n a m i c  q u a n t i t i e s  can be  a s s u m e d  known, and only the  equa t ions  of e l e c t r o -  
d y n a m i c s  have to  be  so lved .  F o r  s i m p l i c i t y ,  l e t  the  m o v e m e n t  t ake  p l a c e  wi th  
c o n s t a n t  v e l o c i t y  V = V x = cons t .  In add i t i on ,  l e t  the  Reyno lds  m a g n e t i c  n u m b e r  
R m  and the  Ha l t  p a r a m e t e r  w~" be  s m a l l .  U n d e r  t h e s e  a s s u m p t i o n s ,  the  e l e c t r i c  
c u r r e n t j  and  po t en t i a l  ~ d i s t r i b u t i o n s  a r e  d e s c r i b e d  b y  the equa t ions  

j " =  ~ ( - -  Vq9 + c - 'V  X B), div j = 0 , (i.i) 

From (i.i), the Laplace equation 

A ~ =  0 (1.2) 

ho lds  fo r  r 
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As the boundary  conditions on the walls we have the conditions for  no-flow of the no rma l  cur ren t  

]u = O, OyOr ,= ci V x B z ( z  ) w h e n y = 0 ,  h . (1.3) 

We introduce d imens ion less  va r i ab l e s  defined by 

x = x~ y = y~ l =  l~ V----- v V *  

o v = l ,  B = bB* ,  ~ = ~ ~1, e = ~1/~2 

, = T o  . V'B'he , ] = ]o ~tV*B*c , (2 = Qo zlv *~B*~h2c~ (1.4) 

Here  V* and B* a re  the c h a r a c t e r i s t i c  veloci ty  and induction of the magnet ic  field, and Q the Joule 
dissipat ion.  For  convenience,  the degree  sign will be omit ted in the d imens ion less  var iab les .  We in t ro -  
duce the auxi l ia ry  potential  

~p = (p + b(z)y.  (1.5) 

The boundary  condition (1.3) on the wails becomes  homogeneous when wri t ten for  r The p rob l em 
may  eas i ly  be solved by F o u r i e r ' s  method; the requ i red  function r is wri t ten as a s e r i e s  in each of 
the regions  1, 2, and 3: 

co 

b (x) (i = t, 2, 3) ~PI(x 'Y)  = ~=1 ~ '  %i(x) cos (2r~y) § 2 (1.6) 

r ~ = l / 2 a ( 2 v - - t )  (v = t ,  2 .... , n , . . . ) .  

On subst i tut ing (1.5) and (1.6) in (1.2), o rd inary  second-order  differential  equations a r e  obtained for  
the functions Cvi(x), which may  be solved under  the boundary  conditions resul t ing f r o m  the boundar ies  of 
the potential at • and the discontinuity of the normal  cur ren t  Jx and of the tangential  component  Ey = 
Oq~/Sy on the l ines of discontinuity x --.1 and x = +l .  

The solution can then be used to analyze  the behav ior  of the e lec t r ica l  quantit ies on pass ing  through 
the s t r ip  ( - / ,  l) when the width of the s t r ip  .is smal l  (I ~ 0), the conductivity 0" 2 is high (e -"  0), and we have 
different  ra t ios  Ue.  

2. Consider  an e l e m e n t a r y  volume in the s t r ip  ( - l , l ) ,  of unit width, length 2/ ,and height dy. The in-  
tegra l  equation 

I div jdv  = 0 

v 

holds for  this volume,  or  by the Gauss- -Ost rogradski i  theorem,  

I j d s  = O, (2.1) 
E 

The re la t ionsh ip  

+ l  

d I ] v ( x ' y )  d x =  dI i x ( - l ,  y ) -  ]~( § l, y ) =  - C  z~ d~ (2.2) 

can be obtained f r o m  (2.1), where  I_ is the cur ren t  through the s t r ip  c ro s s  section.  Substituting the e x p r e s -  
sion fo r  jy obtained f r o m  (1.1) in (2.2), we get 

-{-I 

dl _ ~ ~ X~ dz"  (2.3) 
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If b (x), represent ing  the magnetic field as a function of the longitudinal coordinate,  is continuous 
everywhere  and bounded along with its derivatives b'(x) and b"(x), we find by passing to the limit as ~ ~ 0 
in the solution obtained in Sec. 1, that 

l ~ Ksin(2r~y) ~y 
jr(0, ~ ) = - ~  r ~ ( l + 2 r J / 8 ) '  ( O , g ) = - - e ] ~ , ( O , ~ ' ) - - b ( O )  

21 c~ Kcos(2rvy ) 
]~. ( - -  l, g) - -  ]:~ ( l, g ) = ~ -  ~ r~(l+2rJ/e) ' I = 2 1 ] v ( O '  g) 

n 0 3  

K= 4r Er ( f b(x)o p(2r x)dx + ib(x) xp(--2r x)dx)--b(O)l. 
- - 0 3  0 

(2.4) 

(2.5) 

(2.6) 

It a lso follows f rom the passage to the limit that the difference O q~/O y ( l , y ) -~ ( v /O y  ( - 1 , y ) ~ l  and 
tends to zero  as l ~  0. The same conclusion can be reached for the difference between the potential 
values at the s t r ip  edges, since the problem is symmet r i c  about the line y = 1/2. 

Comparing (2.4) and (2.5), the relationship 

~-x (/' Y) - -  Oxx ~ Oy"' "~' (2.7) 

is obtained. 

Notice that, according to the second of Eqs. (2.5), the cur rent  density jy(x,y) var ies  weakly along the 
strip.  This means that (2.7) may be obtained direct ly  f rom (2.2) and (2.3), by replacing the integrals in 
them by the integrands, taken at the mid-point of the str ip,  multiplied by the s t r ip  width. In cases  when 
jy(x,y) var ies  substantial ly along the s t r ip  (e.g., when the magnetic field has a discontinuity inside the 
strip),  this substitution cannot be made, and the relationship (2.7) may not be satisfied. A s imi la r  condi- 

tion was obtained ea r l i e r  by Shercliff [6] when analyzing the boundary conditions 
on thin, highly conductive, fixed wails, contacting a conducting liquid on one side 

p e d a n c e  between the liquid and wall was examined. Since (2.7) has the same 
~ s t ruc ture  as Shereliff 's  condition, we shall refer  to it by that name. 

f ~ To sum up, in the presence  of a narrow s t r ip  possess ing  very  high conduc- 
t m -~" tivity, one of the usual relationships at a discontinuity, namely,  continuity of the 

tangential component of the e lec t r ic  field, always remains  valid, while the second 
Fig. 2 

relationship, namely, continuity of the current  density component normal  to the 
discontinuity, is violated when the rat io l / e  is finite or tends to infinity. This result  should cause no s u r -  
pr ise  in the present  case, since the condition {Jn} = 0 is tradit ionally derived on the assumption that J'r is 
bounded on the surface  of discontinuity, whereas in our example jy increases  indefinitely at in ter ior  points 
of the strip. 

Letting l / e  ~ ~,  (2.4) gives 

~  g) -[- b(0) = 0 .  (2.8) o~t 

Since the coordinate x = 0 on the center- l ine  of the strip,  (2.8) implies that 

= const (2.9) 

on the strip,  r egard less  of the magnetic field. 

This boundary condition is usually specified on electrodes.  

In short ,  when solving magnetohydrodynamic problems concerned with flows with narrow layers  of 
highly conductive medium, the following procedure  may be adopted; if l / e  ~ O, the layer  can be d isregarded 
and the working per formed in the usual way; while if t / e  is finite or tends to infinity, the layer  may be r e -  
placed by a surface  of discontinuity, on which the conditions {0~/0y} = 0 and one of conditions (2.7), (2.8), 
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or (2.9), a re  satisfied, depending on the size of the ra t io  l / ~  andthe value of b(0). It is c lear  f rom what has 
been said that these recommendat ions  should only be followed when the functions b (x), b'ix), and b"(x) a re  
continuous and bounded at in te r ior  points of the highly conductive layer  (or layers).  

Notice the following point. It was mentioned in Sec. 1 that the problem was being solved on the a s -  
sumption that the induced magnetic fields could be ignored. But the conductivity a2 of the s tr ip ( - / , / ) i s  
assumed to be quite high, so that Rm(a2) may in general be considerably g rea te r  than unity. It was the re -  
fore neces sa ry  to evaluate the induced magnetic field B i that may be produced by currents  flowing in the 
strip. Direct  evaluation of the induced magnetic field f rom the computed currents  showed that, r egard less  
of the s t r ip  conductivity a2, we always have B i << B, so that it may in fact be ignored in the calculations. 
This is bound up with the following features of the current  flow in the end zones of the magnetic field. The 
current  I flowing in the s t r ip  depends on the position of the lat ter  relative to the applied fieid. If the s t r ip  
is at the center  of the end cur ren ts  (K = 0), no current  flows in it. If the s tr ip is left of center  (K > 0) or 
right of center  (K < 0), the cur rent  flowing in the highly conductive s t r ip  will a lso flow in the adjacent low- 
conductivity regions,  and the total impedance to the current  path proves to be quite high. 

3. Consider  the influence on the Joule dissipation Q when a s t r ip  of high conductivity is situated in a 
medium of low conductivity. In a channel with nonconducting wails,  Q is well known to be [3] 

-boo 

(2 = -- 2a i I ].b~Ixcly (3.1) 
O --t::O 

where 2a is the channel width. 

Substituting (1.1), (1.5), and (1.6) in (3.1), we get 

+oo 
Q = - . 4 a ~  ~, I ~ ( x ) b ( x ) d x ,  (3.2) 

v ~ l  - -oo  

It has been shown in several  ea r l i e r  papers  that, the more  sharply the magnetic field drops in the 
entry and departure  zones, the g rea te r  the end currents  flowing in the channel. It therefore  seems worth 
considering the model problem in which the magnetic  field has a s tep-wise dependence on the longitudinal 
coordinate. Let the s t r ip  ( - / , / )be  located at a distance m f rom the point where the magnetic field jumps 
(Fig. 2). Divide the channel into three regions,  as shown in Fig. 2. As before,  the solution for the function 
r in each of the regions will be sought as a ser ies  (1.6). The ordinary  second-order  differential equa- 
tions obtained during the p rocess  of solution will be solved by util izing the conditions on the discontinui-  
ties and the boundedness conditions for the potential at +oo. The usual relationships at a discontinuity will 
be employed on the line x = m, while the conditions {agv/Oy} = 0 and Shercliff 's  condition (2.7) will be used 
on the line x = 0. The resul t  is the following for  the Joule dissipation: 

co co sh (2rvrn) (1 + 4rvl / e) -}- ch (2rvm) 

Q = 2a~=, ~ - -  a ~ r3(i_~2r~l/a)[sh(2r~m)_~ch(2r~m)] �9 (3.3) 
=I /'v3 v~l 

Consider  some limiting cases .  

F i r s t  l imiting case:  

oo 
• O=a>1, t.,  

The solution is the same as for  the corresponding problem in which no s t r ip  of high conductivity is 
present .  
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Second l i m i t i n g  c a s e :  

8 

l Q = 2a ' r~[l  +th(2r jn) l  

In th i s  c a s e  Q has a m a x i m u m  as  m ~ 0, equal  to  

c o  

= rv3 

Note that  the  p a s s a g e  to  the l i m i t  m ~ 0 i m p l i e s  that  the  s t r i p  ( - l , l )  c o m e s  i n f i n i t e s i m a l l y  c l o s e  to 
the  poin t  w h e r e  the m a g n e t i c  f i e ld  is d i s c o n t i n u o u s ,  though the  poin t  of d i s c o n t i n u i t y  r e m a i n s  ou t s ide  the  
s t r i p .  

T h i r d  l i m i t i n g  c a s e  : 

171-~ oo, 

c o  

r~ 3 

The h igh ly  conduc t ive  l a y e r  is s een  to l e a d  to an i n c r e a s e  in the Jou le  d i s s i p a t i o n ;  the  c l o s e r  it  is to 
the  point  w h e r e  the  m a g n e t i c  f i e ld  is d i s c o n t i n u o u s ,  the  g r e a t e r  i t s  in f luence .  As  m --* ~o, the  l a y e r  has  no 
e f fec t  on Q, s i n c e  the  end c u r r e n t s  a r e  s u b s t a n t i a l l y  n o n z e r o  a t  d i s t a n c e s  of the gage  o r d e r  (h) f r o m  the 
point  w h e r e  the m a g n e t i c  f i e ld  changes  r a p i d l y .  

4. C o n s i d e r  the  in f luence  of a n a r r o w  l a y e r  of high conduc t iv i t y  on the  c u r r e n t  d i s t r i b u t i o n  in the  
channe l .  Suppose ,  fo r  i n s t a n c e ,  tha t  the  l a y e r  ( - / , / )  is to  l e f t  of c e n t e r  of the  end c u r r e n t s ,  w h e r e  K > 0, 
and that  a c u r r e n t  I f lows th rough  it in the  p o s i t i v e  d i r e c t i o n  of the y a x i s .  Not ing  tha t  cos  (2rpy) is  an odd 
func t ion  r e l a t i v e  to  the  l ine  y = ~/2, we obta in  f r o m  (2.5) 

]~ (--l, y) -- /~ (z, y) > O when O<y<i/2 

]~(--Z,y)--]~(Z,~)<O when ~/2<Y<I, 
(3.4) 

Since  Ix -< 0 when 0 < y < 1/2, [:~ < ~o, and  Ix -> 0 when I/2 < y < 1, I~ < '~, it  fo l lows  f r o m  the i n e q u a l i -  
t i e s  (3.4) and  the con t inu i ty  of aq~/0y and b on p a s s i n g  th rough  t h e  n a r r o w  l a y e r ,  that  the  c u r r e n t  l i n e s  will  
be  d e f o r m e d  in the m a n n e r  shown in F ig .  2. It is  c l e a r  f r o m  Fig .  2 tha t  the conduc t ing  l a y e r  l e a d s  to a d e -  
c r e a s e  in the  l eng th  of a c u r r e n t  l ine ,  s i n c e  the  l a t t e r  i s ,  s o t o  speak ,  d rawn  in t o w a r d s  the l a y e r .  

The  s o l u t i o n s  of the  p r o b l e m s  c o n s i d e r e d  in Secs .  1 and 3 show that ,  a s  e / l  ~ 0, the  end c u r r e n t s  
a r e  c l o s e d  up  t h rough  the l a y e r ,  i . e . ,  no c u r r e n t s  f low in the  r e g i o n  1. When t / e  --" O, the  p i c t u r e  of the  
c u r r e n t  l i n e s  is  the  s a m e  as  when no l a y e r  of high c onduc t i v i t y  is  p r e s e n t .  The  u s u a l  p i c t u r e  of c u r r e n t  
f low in the channe l  is l i k e w i s e  r e t a i n e d  when the l a y e r  is  r e m o t e  f r o m  the r eg ion  in which  the m a g n e t i c  
f i e ld  c h a n g e s .  

In conc lu s ion ,  the  a u t h o r  thanks  A.  B. V a t a z h i n  f o r  v a l u a b l e  a d v i c e  and d i s c u s s i o n .  
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