FEATURES OF THE ELECTRIC CURRENT AND FIELD

DISTRIBUTIONS IN FLOWS WITH NARROW LAYERS

OF HIGHLY CONDUCTIVE GAS

E. K. Kholshchevnikova

A solution obtained by Fourier's method provides the basis for analyzing the influence of
a narrow gas layer, of higher conductivity than the rest of the flow, on the Joule dissipa-
tion and current distribution in the terminal zone of a plane magnetohydrodynamic chan-
nel with nonconducting walls. The MHD interaction parameter, Reynolds magnetic num-
ber, and Hall parameter are assumed small. It is shown that a narrow, highly conductive
layer can on occasions be replaced by a surface of discontinuity, on which well-defined
relations between the electric quantities are satisfied. The presence of such a layer
leads to an increase in the Joule dissipation and a reduction in the lengths of the current
lines. A hopeful arrangement for a magnetohydrodynamic energy converter is one in
which an inhomogeneous flow is used, consisting of a continuous series of alternating
very hot and less hot zones [1,2]. For this arrangement, it is worth examining the in-
fluence of the stratified conductivity distribution of the working body on the Joule dissi~
pation and the electric currents in the channel. Numerous papers have discussed the
case of inhomogeneous conductivity in the context of MHD system electrical character-
istics. A general solution was obtained in [3] for the stationary problem on the electric
field in a plane MHD channel with nonconducting walls when the magnetic field and con-
ductivity are arbitrary functions of the longitudinal coordinate. In [4], where the braking
of undeformed conducting clusters was investigated, the Joule dissipation, linked with the
appearance of closed eddy currents in the cluster as it enters and leaves the magnetic
field, was evaluated. The relationships between the electrical quantities, on moving
through a narrow layer of low-conductivity liquid, were considered in [5].

1. Consider a plane channel—« < x < +», 0 = y = h with nonconduecting walls (Fig. 1), through which
flows a medium with stratified electrical conductivity: o, in regions 1 and 3 (the less hot zones), and o,

in region 2 (the hotter zone). The flow takes place in a transverse magnetic field

- 7T dynamics have to be solved. For simplicity, let the movement take place with
F— o of 6 constant velocity V = Vg = const. In addition, let the Reynolds magnetic number
| | s R and the Hall parameter w7 be small. Under these assumptions, the electric
-i8 currentj and potential ¢ distributions are described by the equations
/ j'=0 (= Vg + ¢tV x B), divj=0,
Fig. 1

From (1.1), the Laplace equation

Api=0

holds for o.

B = (0,0,By(x)) with weak magnetohydrodynamic interaction. In this case the hy-
drodynamic quantities can be assumed known, and only the equations of electro-
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Asg the boundary conditions on the walls we have the conditions for no-flow of the normal current

. il 1
=0, == ViB,(a) wheny=0,h . (1.3)

We introduce dimensionless variables defined by

z=2h, y=yh, 1=10h V =0oV*

v=1, B =10bB% 6= 6%, &=0/6

VEBh . GiV*B# o GVERBE (1.4)
P=9"——, ==, Q=@ F—F—.

Here V* and B* are the characteristic velocity and induction of the magnetic field, and Q the Joule
dissipation. For convenience, the degree sign will be omitted in the dimensionless variables. We intro-
duce the auxiliary potential

P =@ + b(@)y.. (1.5)
The boundary condition (1.3) on the walls becomes homogeneous when written for ¥. The problem

may easily be solved by Fourier's method; the required function #(x,y) is written as a series in each of
the regions 1, 2, and 3:

wi<x,y>=:§§iqhi(z>cos<2rvy>—+ 2a =12y w6

o=@y —1) (=1, e, ).

On substituting (1.5) and (1.6) in (1.2), ordinary second-order differential equations are obtained for
the functions ¥y (x), which may be solved under the boundary conditions resulting from the boundaries of
the potential at +e and the discontinuity of the normal current jy and of the tangential component Ey =
9¢/8y on the lines of discontinuity x —? and x = +1.

The solution can then be used to analyze the behavior of the electrical quantities on passing through
the strip (~, 1) when the width of the strip is small ( — 0), the conductivity o, is high (¢ —~ 0), and we have
different ratios §/g.

2. Consider an elementary volume in the strip (~,I), of unit width, length 2I,and height dy. The in-
tegral equation

{divjaw=0

v

holds for this volume, or by the Gauss-Ostrogradskii theorem,

des =0, (2.1)
=
The relationship
d R dI
(=L — (L9 = 5 @ g de= G 2.2)

1

can be obtained from (2.1), where Lig the current through the strip cross section. Substituting the expres-
sion for jy obtained from (1.1) in (2.2), we get

41

it 1 ¢9
E:_—T&ﬁ—yzdz. (2.3)

I
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If b (x), representing the magnetic field as a function of the longitudinal coordinate, is continuous
everywhere and bounded along with its derivatives b'(x) and b"({x), we find by passing to the limit as{ — 0
in the solution obtained in Sec. 1, that

i K sin 2ry) F .
WO W= Drrrarre sy @W= @ N—b0) 2.4)
20 - Kcos 2ry) X
(= ly) =il y) = ém’ I =21j,(0, y) (2.5)
= 4r,|r [ ( g b(x)exp (2rx)dz L+ S b(z)exp (— 2r,r) d:c) —b (0)] (2.6)
o o

It also follows from the passage to the limit that the difference Bw/ay(l,y)—ago/ay {(—1,y)~1 and
tends to zero as I— 0. The same conclusion can be reached for the difference between the potential ¢
values at the strip edges, since the problem is symmetric about the line y = 1/2.

Comparing (2.4) and (2.5), the relationship

-~y =—2350.y) @.7)

is obtained.

Notice that, according to the second of Egs. (2.5), the current density j, (x,y) varies weakly along the
strip. This means that (2.7) may be obtained directly from (2.2) and (2.3), by replacing the integrals in
them by the integrands, taken at the mid-point of the strip, multiplied by the strip width. In cases when
jy(x,y) varies substantially along the strip (e.g., when the magnetic field has a discontinuity inside the
strip), this substitution cannot be made, and the relationship (2.7) may not be satisfied. A similar condi-
tion was obtained earlier by Shercliff [6] when analyzing the boundary conditions
on thin, highly conductive, fixed walls, contacting a conducting liquid on one side
i=1 4=; and a fixed nonconducting space on the other. The influence of the contact im-
pedance between the liquid and wall was examined. Since (2.7) has the same
structure as Shercliff's condition, we shall vefer to it by that name.

— : k- ——— —
! N I To sum up, in the presence of a narrow strip possessing very high conduc-
7 y “z tivity, one of the usual relationships at a discontinuity, namely, continuity of the
Fig. 2 tangential component of the electric field, always remains valid, while the second

relationship, namely, continuity of the current density component normal to the
discontinuity, is violated when the ratiol/e is finite or tends to infinity. This result should cause no sur-
prise in the present case, since the condition {jn} = 0 is traditionally derived on the assumption that j; is
bounded on the surface of discontinuity, whereas in our example jy increases indefinitely at interior points
of the strip.

Letting /e o, (2.4) gives
a3 .
35 (0. 1) +b(0)=0. @.8)

Since the coordinate x = 0 on the center-line of the strip, (2.8) implies that
¢ = const (2.9)
on the strip, regardless of the magnetic field.
This boundary condition is usually specified on electrodes.

In short, when solving magnetohydrodynamic problems concerned with flows with narrow layers of
highly conductive medium, the following procedure may be adopted; if {/e — 0, the layer can be disregarded
and the working performed in the usual way; while if £/¢ is finite or tends to infinity, the layer may be re-
placed by a surface of discontinuity, on which the conditions {8¢/8y} = 0 and one of conditions (2.7), (2.8),
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or (2.9), are satisfied, depending on the size of the ratio I /¢ andthe value of b(0). It is clear from what has
been said that these recommendations should only be followed when the functions b(x), b'(x), and b" (x) are
continuous and bounded at interior points of the highly conductive layer (or layers).

Notice the following point. It was mentioned in Sec. 1 that the problem was being solved on the as~
sumption that the induced magnetic fields could be ignored. But the conductivity o, of the strip (- 1,1)is
assumed to be quite high, so that Ry, (0;) may in general be considerably greater than unity. It was there-
fore necessary to evaluate the induced magnetic field B; that may be produced by currents flowing in the
strip. Direct evaluation of the induced magnetic field from the computed currents showed that, regardless
of the strip conductivity o, we always have Bj <« B, so that it may in fact be ignored in the calculations.
This is bound up with the following features of the current flow in the end zones of the magnetic field. The
current I flowing in the strip depends on the position of the latter relative to the applied fieid. If the strip
is at the center of the end currents (K = 0), no current flows in it. If the strip is left of center (K > 0) or
right of center (K < 0), the current flowing in the highly conductive strip will also flow in the adjacent low-
conductivity regions, and the total impedance to the current path proves to be quite high.

3. Consider the influence on the Joule dissipation Q when a strip of high conductivity is situated in a
medium of low conductivity. In a channel with nonconducting walls, Q is well known to be [3]

00

1
Q=2 § jypiady (3.1)

—00

where 2a is the channel width.

Substituting (1.1), (1.5), and (1.6) in (3.1), we get

oo oo

= —4as 3 | 9,(@)b(@)dz. (3.2)

v=1 —00

It has been shown in several earlier papers that, the more sharply the magnetic field drops in the
entry and departure zones, the greater the end currents flowing in the channel. It therefore seems worth
considering the model problem in which the magnetic field has a step-wise dependence on the longitudinal
coordinate. Let the strip (~I,l)be located at a distance m from the point where the magnetic field jumps
(Fig. 2). Divide the channel into three regions, as shown in Fig. 2. As before, the solution for the function
¥(x,y) in each of the regions will be sought as a series (1.6). The ordinary second-order differential equa-
tions obtained during the process of solution will be solved by utilizing the conditions on the discontinui-
ties and the boundedness conditions for the potential at +«. The usual relationships at a discontinuity - will
be employed on the line x = m, while the conditions {8¢/8y} = 0 and Shercliff's condition (2.7) will be used
on the line x = 0. The result is the following for the Joule dissipation:

21 S sh@rm) (L 4rl/e)+ ch@r,m)
Q=22 o R g; rF(1+2r1/e) [sh (Gr,m) F b @rm] (3.3)

Consider some limiting cases.

First limiting case:

R
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The solution is the same as for the corresponding problem in which no strip of high conductivity is
present,
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Second limiting case:

i

=0, Q=2 FE[l+th@rm]

[

idgs

In this case Q has a maximum as m — 0, equal to

1
5 -
rV

¢=2a 2
=1

Note that the passage to the limit m — 0 implies that the strip (-,{) comes infinitesimally close to
the point where the magnetic field is discontinuous, though the point of discontinuity remains outside the
strip.

Third limiting case:

m-—> oo, Q:az

=

»

3
Ty

o

The highly conductive layer is seen to lead to an increase in the Joule dissipation; the closer it is to
the point where the magnetic field is discontinuous, the greater its influence. As m — », the layer has no
effect on Q, since the end currents are substantially nonzero at distances of the gage order (h) from the
point where the magnetic field changes rapidly.

4. Consider the influence of a narrow layer of high conductivity on the current distribution in the
channel. Suppose, for instance, that the layer (-,1) is to left of center of the end currents, where K > 0,
and that a current I flows through it in the positive direction of the y axis. Noting that cos (2r,y) is an odd
function relative to the line y = Vz, we obtain from (2.5)

jx (=L y) —jx(l,y) >0 when 0y <Y, (3.4)
je (=L y) —jx () <0 when Y, <y<t,

Since j, = 0 when 0 <y < !/,, ¥ <, and j, = 0 when I/, <y < 1,|x < «, it follows from the inequali-
ties (3.4) and the continuity of 8¢/8y and b on passing through the narrow layer, that the current lines will
be deformed in the manner shown in Fig. 2. It is clear from Fig. 2 that the conducting layer leads to a de-
crease in the length of a current line, since the latter is, soto speak, drawn in towards the layer.

The solutions of the problems considered in Secs. 1 and 3 show that, as £/I — 0, the end currents
are closed up through the layer, i.e., no currents flow in the region 1. When (/e — 0, the picture of the
current lines is the same as when no layer of high conductivity is present. The usual picture of current
flow in the channel is likewise retained when the layer is remote from the region in which the magnetic
field changes.

In conclusion, the author thanks A. B. Vatazhin for valuable advice and discussion.
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